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13  DEMONSTRATING INDISTINGUISHABILITY FROM BACKGROUND

Thus far in this report the emphasis has been on conducting final status surveys that demonstrate
that any residual radioactivity in a survey unit is within the release criterion. In these cases,
Scenario A is generally preferred for the survey design. In some cases, however, it may be more
appropriate to demonstrate indistinguishability from background. Demonstrating
indistinguishability from background using Scenario B will be a useful option when the residual
radioactivity consists of radionuclides that appear in background, and the variability of the
background is relatively high. Background variability may be considered high when differences
in estimated mean concentration measured in potential reference areas are comparable to
screening level DCGLs. 

13.1  Determining Significant Background Variability

In Section 2.2.7,  the concept of a reference area was introduced. Any difference in the
concentrations between the reference area and the survey unit is assumed to be due to residual
radioactivity. It is not possible to determine whether or not an observed difference is actually due
to variations in the mean background concentrations between these areas.

When the variations in mean background among different potential reference areas are small
compared to the width of the gray region, they can often be neglected. In such cases, the choice
of reference area will not materially affect the decision on whether or not to release a survey unit
to which it is compared. 

As the variations in mean background among different potential reference areas become
comparable in magnitude to the width of the gray region, they can no longer be ignored. When
the reference area has a higher mean background than the survey unit, the survey unit will be
more likely to pass, and when the reference area has a lower mean background than the survey
unit, the survey unit will be more likely to fail. Since any difference in background activity
between the survey unit and the reference area is attributed to residual radioactivity, the choice of
reference area may materially affect the decision on whether or not to release a survey unit to
which it is compared.

As an example, consider Figure 13.1, which illustrates a DQO specification for a survey design.
The gray region and acceptable rates for decision errors are shown by the solid curve. Suppose
the reference area happens to have a lower mean concentration than the actual background
concentrations in the survey unit. This difference is depicted by the double-headed arrow. The
values of  residual radioactivity concentrations in this survey unit will appear larger than they
actually are by the amount of that difference. The result is that the actual probability that the
survey unit passes is represented by the dashed curve, which is shifted downward from the solid
curve by the difference in mean background between the survey unit and the reference area. This
means, for example, that when the true residual radioactivity concentration is at the LBGR there
is only about a 65% probability of passing this survey unit, rather the 95% probability specified
in the DQO.    

Exactly how much, and in which direction the probabilities shift will depend on the particular
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Figure 13.1 Impact of Background Variability on Decision Errors

reference area. Under such circumstances, whether a survey unit  passes or fails may depend
more on the particular reference area chosen than on the amount of residual radioactivity that it
contains. This leads to a quantitative definition of what it means for a survey unit to be
indistinguishable from background. It is expressed in terms of the potential for variations in
reference area mean concentrations to impact decision error rates. First, it is necessary to
establish that there is significant variability among potential reference areas. A procedure for
doing this is discussed in the next section. If it shown that significant variability exists, this
information is used to define a level of residual radioactivity concentration that is
indistinguishable from background variations. Section 13.4 discusses how this can be used to
plan a final status survey using Scenario B.   

13.2  Determining if Reference Areas Have Significantly Different Background Levels

In this section, we focus our attention on potential reference areas. Consider all the reference
areas to which a particular survey unit may be compared according to the criteria set out in
Section 2.2.7. To determine whether there are significant differences among the reference area
background means,  the reference area measurements are expressed as:

x   = ! + µ + z  (13-1)ij      i  ij

where 
x = the jth measurement in the ith reference area, for j = 1 to n, the number of measurements in ij               i

   the ith reference area, and for  i = 1 tok, the number of reference areas 

! = the mean concentration over all reference areas
µ = the difference between the overall mean and the mean in the ith reference areai

 z = the contribution of random spatial and measurement variability to the  jth measurement in    ij

   the ith reference area
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(13-2)

(13-3)

(13-4)

!  is an unknown constant. The µ  are distributed across reference areas with mean zero andi

standard deviation 7, but within reference area i,  µ  has a fixed value. The z  have mean zero andi      ij

standard deviation ). The measurements within reference area i have mean ! + µ , and variancei 

) . The reference area means are distributed around the overall mean !  with variance deviation2

7 . Thus, if there is no variability in the reference area means, then  7  = 0. The measurement2               2

variability within each reference area is ) , and it is the same whether or not there is a significant2

difference among the reference area means. 
 
If  the µ  and the z are assumed to be normally distributed, the above corresponds to a randomi   ij  

effects one-way analysis of variance model, sometimes called Model II.  7  and )   are called the2   2

components of variance. The null hypothesis, H  : 7  = 0, versus the alternative, H  : 7  > 0, is0        a
2        2

tested parametrically with an F-test.  The non-parametric equivalent is the Kruskal-Wallis test. 

Before collecting data for the Kruskal-Wallis test, the acceptable Type I error rate, �  , must beKW

specified. This is the acceptable probability of  concluding that the reference areas have different
average concentrations, when in fact they are the same. In setting �  it is important to considerKW

that the risk involved in a Type I error may be much smaller than the risk of a Type II error.

To perform the Kruskal-Wallis test, all of the measurements from the reference areas are pooled
and ranked. For every measurement, x  , there is a corresponding rank, r  . There will be ij       ij

N = n  + n  + ... + n  measurements in all. The sum of all of the ranks is N(N+1)/2. Therefore1  2    k 

the average rank is  N(N+1)/(2N) =(N+1)/2. If the distribution of measured concentrations in each
reference area is the same, then the average rank for each reference area, should also be about the
same, i.e., (N+1)/2. 

Let

be the average rank in reference area i. The quantity is a measure of how
different this reference area is from the others. 

The Kruskal-Wallis statistic is a weighted sum of the squares of these differences over all of the
reference areas: 

The weights in Equation 13-3 have been chosen so that the probability that K exceeds a given 
value K  , may  be approximated by a chi-squared distribution with k�1 degrees of freedom:c
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The critical value K  is determined from setting Values of forc

typical values of �   are tabulated in Table 13.1. If the value of K computed from Equation 13-3KW

exceeds K  , then the null hypothesis is rejected.c

Table 13.1 Critical Values, K , for the Kruskal-Wallis Test c 

�KW

k�1 0.01 0.025 0.05 0.1 0.2
1 6.6 5.0 3.8 2.7 1.6

2 9.2 7.4 6.0 4.6 3.2

3 11.3 9.3 7.8 6.3 4.6

4 13.3 11.1 9.5 7.8 6.0

5 15.1 12.8 11.1 9.2 7.3

6 16.8 14.4 12.6 10.6 8.6

7 18.5 16.0 14.1 12.0 9.8

8 20.1 17.5 15.5 13.4 11.0

9 21.7 19.0 16.9 14.7 12.2

10 23.2 20.5 18.3 16.0 13.4

For example, suppose there are four reference areas under consideration, and ten measurements
are made in each. The data and the ranks are shown in Table 13.2. The same type of spreadsheet
functions that were used for the WRS test can also be used to calculate the ranks for the Kruskal-
Wallis test. 

Using Equation 13-2,
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(13-5)

(13-6)

With k�1 = 3, this value of K, is greater than the highest value of K  in Table 13.1, viz., 11.3 forc

�  = 0.01 . The null hypothesis is rejected. It is concluded that these reference areas do haveKW 

significantly different concentration distributions.

Table 13.2  Example Data for the Kruskal-Wallis Test

Measurements Ranks
Area 1 Area 2 Area 3 Area 4 Area 1 Area 2 Area 3 Area 4

1 0.27 1.04 2.45 3.77 6 13 27 39
2 1.87 0.39 0.34 2.63 20 9 8 31
3 0.97 2.07 3.06 4.05 10 23 37 40
4 1.01 �0.57 2.83 1.72 11 2 35 19
5 2.08 1.97 1.09 1.50 24 21 14 17
6 1.62 �0.22 0.26 2.47 18 3 5 29
7 0.30 1.39 2.80 1.42 7 15 34 16
8 1.98 0.05 2.77 2.47 22 4 33 28
9 2.18 �0.75 2.42 2.76 25 1 26 32
10 1.02 2.50 2.86 3.35 12 30 36 38

Mean 1.33 0.79 2.09 2.61 Sum 155 121 255 289
StdDev 0.71 1.17 1.09 0.91 Total 820

13.3  Establishing the Concentration Level That Is Indistinguishable 

Once it is decided that there are significant differences among the potential reference areas for a
survey unit, a measure of the variability among these reference areas is needed.   

The sample mean of the measurements in area i is 

which provides an estimate of the mean concentration in reference area i, namely  ! + µ .i 

The overall sample mean
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 The sum of the squared differences from the overall mean is composed of two parts:(1)

The first term on the right hand side is the sum of squares within reference areas and the second term on the right
hand side is the sum of squares between reference areas. The mean square is obtained by dividing the sum of
squares by the degrees of freedom. For the means square within reference areas this is the total number of data
points minus the number of reference areas. For the means square between reference areas this is the number of
reference areas minus one.
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(13-7)

(13-8)

(13-10)

is an estimate of the overall mean background concentration, ! . 

The sample variance of the measurements in area i is

 which is an estimate of  ) .2  

Since ) , is assumed to be the same in each reference area, these estimates can be pooled into the2

following estimate: 

In the analysis of variance, is called the mean square within reference areas . (1)

The mean  square between reference areas  is 

The righthand sides of Equations 13-8 and 13-9 may appear imposing, but essentially only
involve:

(1) the sum of the squares of all the measurements,
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(13-11)

(13-12)

(13-14)

(13-15)

(2) the square of the sum of all the measurements,

and

(3) the sum of the squares of the reference area averages weighted by the number of
measurements,

The component of variance, 7 , is estimated by2

   where           (13-13)

n  is usually slightly less than the average number of samples taken in each reference area,0

If the number of measurements in each reference area is the same, n  = n  = ...= n  = n, then, 1  2   k

The calculation of for the example data of Table 13.2 proceeds using the sums and squares

shown in Table 13.3.

The sums (1), (2), and (3) together with s  and s  are calculated from Table 13.3 as follows: b   w
2  2

From Equation 13-10,
(1)  =  sum of squares = 22.28 + 18.50 + 54.30 + 75.80 = 170.88.

From Equation 13-11,
(2)  =  square of the sum = (13.30 + 7.87 + 20.88 + 26.14)  = (68.19)   = 4649.88.2  2
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(13-16)

From Equation 13-12,
(3)  =   weighted sum of the squares of the averages 10(1.33  + 0.79  + 2.09  + 2.61 ) 2  2  2  2 

 =  10(1.77 + 0.62 + 4.36 + 6.83) = 10(13.58) = 135.8.

From Equation 13-8,
 s  =  (170.88 � 135.8)/(N�k) = (170.88 � 135.8)/36 = 0.97.w

 2

From Equation 13-9,
 s  =  (135.8 � (4649.88/N))/(k�1) = (135.8 � (4649.88/40))/(3) = 6.52.b

 2

Finally, we have 

Table 13.3 Calculation of for the Example Data

Measurements Measurements Squared
Area 1 Area 2 Area 3 Area 4 Area 1 Area 2 Area 3 Area 4

1 0.27 1.04 2.45 3.77 0.07 1.08 6.00 14.21
2 1.87 0.39 0.34 2.63 3.50 0.15 0.12 6.92
3 0.97 2.07 3.06 4.05 0.94 4.28 9.36 16.40
4 1.01 �0.57 2.83 1.72 1.02 0.32 8.01 2.96
5 2.08 1.97 1.09 1.50 4.33 3.88 1.19 2.25
6 1.62 �0.22 0.26 2.47 2.62 0.05 0.07 6.10
7 0.30 1.39 2.80 1.42 0.09 1.93 7.84 2.02
8 1.98 0.05 2.77 2.47 3.92 0.00 7.67 6.10
9 2.18 �0.75 2.42 2.76 4.75 0.56 5.86 7.62
10 1.02 2.50 2.86 3.35 1.04 6.25 8.18 11.22

sum 13.30 7.87 20.88 26.14 22.28 18.50 54.30 75.80
average 1.33 0.79 2.09 2.61
avg sqd 1.77 0.62 4.36 6.83

Although the analysis of variance using the F-test requires the assumption that the data are
normally distributed, the calculation of 7�  does not. Therefore, the values of the mean squares s2          2

b

and s that aregenerated by most statistical computer programs for ANOVA can be used forw
2     

these calculations. Table 13.4 shows an ANOVA for the example data generated by a spreadsheet
program. The entry for the mean square within groups, 0.97, is the same as was found in Table
13.3 for s . Similarly, the entry for the mean square between groups, 6.52, is the same as wasw

2

found in Table 13.3 for s . The F-statistic, which is simply the ratio s /s , is also shown. Ofb         b w
2         2 2

course, if the data from each reference area are consistent with the assumption of normality, the
F-test may simply be used instead of the Kruskal-Wallis test.
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Table 13.4 Analysis of Variance for Example Data 

Source of Sum of Degrees of Mean Square F Statistic
Variation Squares Freedom

Between
Groups 19.56 3 6.52 6.69

Within
Groups 35.08 36 0.97

Total 54.65 39

13.4 Using the Concentration Level That Is Indistinguishable in the WRS Test 

Recall from Section 3.6, that in Scenario B, the hypotheses being tested are 

Null Hypothesis:
H : The mean concentration of residual radioactivity in the survey unit is indistinguishable from0

background up to a level specified by the LBGR.
versus
Alternative Hypothesis:
H : The mean concentration of residual radioactivity in the survey unit distinguishable froma

background is in excess of the DCGL .W

In this scenario, a Type I decision error, with associated probability �, is made when a survey
unit fails when it should pass. A Type II decision error, with associated probability �, is made
when a survey unit passes when it should fail. To set these decision errors, an appropriate gray
region is needed. The lower bound on this gray region is the concentration level above
background that may be considered distinguishable from background.

If the null hypothesis of Kruskal-Wallis test has been rejected, the mean background levels
among reference areas varies about the overall mean ! with a standard deviation estimated by 7� .
The difference in concentration that is distinguishable above background variability may be
expressed in terms of  an appropriate multiple of 7� .  For example, if the reference area means are
normally distributed, the probability that the survey unit mean is more than two standard
deviations away from the overall mean is about 5%. Regardless of how the data are distributed, 
Chebyshev’s Inequality states that the probability that the true mean background in the survey
unit differs from the overall mean background by more than t standard deviations is less than 1/t . 2

Therefore, the probability that the survey unit mean is more than t = 2 standard deviations away
from the overall mean is less than  1/t = 1/4 = 25%. The probability that the survey unit mean is2 

more than t = 3 standard deviations away from the overall mean is less than  1/t = 1/9 = 11%.  In2 

most cases, it is reasonable to assume that the true probabilities will fall somewhere between the
value calculated for the normal distribution and that established by Chebyshev’s inequality. The
multiple that of 7�  that is used in a specific application should be decided during the DQO
process, but a factor of three is a reasonable default. 
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 Recall that since the Quantile test is performed in tandem with the WRS test, �  = �  = �/2, so that the(2)
W   Q

that the size of the two tests in tandem is approximately � = � +� .Q W
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Figure 13.2 Example DQOs for the Probability That the Survey Unit
Passes Versus the Concentration Difference Between the
Survey Unit and the Reference Area

For the example data  7�  = 0.55 so 7�  = 0.74. Thus, differences smaller than 37�  = 2.22 would not2

be considered distinguishable from background variations. Notice that in Table 13.2, the
difference in the means between reference areas #4 and #2 is 2.61 � 0.79 = 1.82.

The WRS test is applied as described in Section 6.3, using the decided upon multiple of 7�  as the
LBGR, and the width of the gray region equal to the DCGL . The hypotheses tested by the W 

WRS under Scenario B are restated as

Null Hypothesis:
H :  The difference in the median concentration of  radioactivity in the survey unit and in the0

reference area is less than the LBGR.
versus
Alternative Hypothesis:
H : The difference in the median concentration of  radioactivity in the survey unit and in thea

reference area is greater than the DCGL .W

The Type I error rate �   = �/2 , is the probability that a survey unit with a difference from theW
(2)

reference area equal to the LBGR will fail the test. The power, 1��, is the probability that a
survey unit with a difference at the DCGL   above the LBGR will fail the test. For example, theW

desired probability for the survey unit passing might look similar to Figure 13.2. 
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(13-17)

The Quantile test is also performed as described in Section 7.2, with � = �/2, and with theQ 

LBGR equal to the decided upon multiple of 7� .

All of the reference area measurements taken for the Kruskal-Wallis test should also be used in
the WRS and Quantile tests. In most cases, no additional reference area samples will be needed.
If additional samples are required, they should be obtained randomly, with all of the reference
areas being equally likely to be sampled.

13.5 Determining the Number of Reference Areas  and the Number of Samples  

In applying the methods of this chapter, it is natural to ask is how many reference areas should be
studied, and how many samples should be taken in each. As was seen in Section 3.8.1, the
number of samples needed depends on both the probability of a Type I error (�) and the
probability of a Type II error (�) that are deemed acceptable for the test. Unfortunately, the power
(1��) of the Kruskal-Wallis test involves functions that are “too complicated to be useful”
(Lehmann and D'Abrerra, 1975).  However, it has been shown that the efficiency of the Kruskal-
Wallis test relative to the F-test is the same as the efficiency of the WRS test to the t-test
(Andrews, 1954). This means that one can get an approximate idea of the power of the Kruskal-
Wallis test by calculating the power of the F-test. 
The power of the F-test is (Brownlee, 1960, p.268):

where

, and is the 1��   percentile of the F distribution with f  = k � 1KW        1

and f  = kn�k degrees of freedom. Through 1, the power depends on the ratio of the variance2

components. Under the null hypothesis, 7  = 0, so 1 = 1.2

 
As an example, consider the data from Table 13.2. If one wished to detect a situation in which

7  = )  , then 1 = 1 + 10(1) = 11. If �  = 0.1, then = = 2.243. The2  2
KW

power,  1��, is then the probability that the F-statistic with 3 and 36 degrees of freedom exceeds
2.243/1 = 2.243/11 = 0.2039. � is the probability that the F-statistic with 3 and 36 degrees of
freedom is less than 0.2039. This probability is about � = 0.1, so the power is about 0.9.

The results of this calculation for other numbers of samples and reference areas are shown in
Table 13.5 for  �   = 0.05, 0.10 and 0.20. Although this is only an approximation, and theKW 

actual power of the Kruskal-Wallis test would be slightly lower, this table indicates that with four
reference areas each with between 10 and 20 samples in each should generally be adequate. Since
the risk of not detecting background variations that are actually present (a Type II error) could
involve the impossible task of remediating background, choosing a higher value for �   than forKW

� would often be justified. From Table 13.5, when k = 4, this implies that �  = 0.1 is aKW 

reasonable default, and in some circumstances even larger values could be considered.
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Table 13.5 Power of the F-test When 7  = )2  2

Number of Number Total 1 Power Power Power
reference of samples Number  when  when  when

areas  in each of �   = 0.05  �   =  0.1  �   =  0.2
 (k) (n) Samples

(kn)

 KW  KW  KW 

2 10 20 11 53.4% 60.7% 69.3%
2 15 30 16 61.3% 67.4% 74.5%
2 20 40 21 66.1% 71.5% 77.7%
2 30 60 31 72.1% 76.5% 81.7%
3 10 30 11 74.0% 79.7% 85.7%
3 15 45 16 81.8% 85.9% 90.1%
3 20 60 21 86.1% 89.2% 92.4%
3 30 90 31 90.5% 92.7% 94.9%
4 10 40 11 85.3% 89.3% 93.0%
4 15 60 16 91.4% 93.8% 96.0%
4 20 80 21 94.2% 95.8% 97.3%
4 30 120 31 96.7% 97.6% 98.5%
5 10 50 11 91.8% 94.3% 96.5%
5 15 75 16 95.9% 97.2% 98.3%
5 20 100 21 97.6% 98.4% 99.0%
5 30 150 31 98.9% 99.2% 99.5%
6 10 60 11 95.4% 97.0% 98.3%
6 15 90 16 98.1% 98.8% 99.3%
6 20 120 21 99.0% 99.4% 99.6%
6 30 180 31 99.6% 99.8% 99.9%

13.6  Determining When Demonstrating Indistinguishability Is Appropriate

The methods of this chapter were developed specifically to address potential difficulties with
demonstrating compliance with dose-based release criteria at sites with spatially variable
background concentrations of natural radionuclides. Generally, the use of Scenario A is preferred
since it involves fewer assumptions in its application and requires only one statistical test. The
null hypothesis for Scenario A is such that when the residual radioactivity in the survey unit is
very close to the DCGL  , the default decision is to not release the survey unit without furtherW

investigation. This provides additional assurance that the release criteria will not be exceeded.
However, when the variability in background is high, this assurance comes at too high a price,
namely the possibility of requiring remediation of survey units containing only background
concentrations of radionuclides. Since the default decision in Scenario B is to release the survey
unit, a second statistical test, the Quantile test, is used to detect non-uniform concentrations of
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residual radioactivity that may be excess of the release criterion, but that might be missed by the
WRS test..
    
It is not possible to anticipate every circumstance in which these methods might be considered
applicable. The suitability of these methods to specific situations should be determined during
the DQO process. Two factors that should be considered in making this determination are:

(1) Have reasonable efforts been made to reduce measurement uncertainty. e.g., by use of
radionuclide-specific methods?

(2) Have reasonable efforts been made to reduce spatial variability by choosing homogeneous
survey units with well-matched reference areas?

Once it is determined that the methods of this chapter are appropriate, the error rates for the
Kruskal-Wallis test should be set. The Kruskal-Wallis test is used to determine whether the
spatial variability of average reference area background concentrations is significant. The
significance level is . If adequate consideration has been given to the decision to demonstrate
indistinguishability, �   need not be set to too low a value. Indeed, if it is felt that backgroundKW

variability should always have the benefit of the doubt, the Kruskal-Wallis test need not be
conducted. Not conducting the test is essentially the same as setting �   = 1.0. Table 13.5 couldKW

still be used as a guide in determining the number of reference areas, and the number of
measurements in each, that will be used to estimate 7�  according to the procedures of 
Section 13.3.

Finally, the appropriate multiple of 7�  to be used as the LBGR should be determined. The
discussion of this issue in Section 13.4 can be used as a guide. 


